PD-95621

 I_{D}

60A

SMPS MOSFET

V_{DSS}

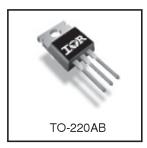
150V

IRFB61N15DPbF

R_{DS(on)} max

0.032Ω

HEXFET[®] Power MOSFET


Applications

- High frequency DC-DC converters
- Motor Control
- Uninterrutible Power Supplies
- Lead-Free

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	60	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	42	A
I _{DM}	Pulsed Drain Current ①	250	_
P _D @T _A = 25°C	Power Dissipation	2.4	W
P _D @T _C = 25°C	Power Dissipation	330	_
	Linear Derating Factor	2.2	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	3.7	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw®	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case		0.45	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
R _{0JA}	Junction-to-Ambient		62	

Notes ① through ⑤ are on page 8

IRFB61N15DPbF

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.18		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.032	Ω	$V_{GS} = 10V, I_D = 36A$ (4)
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 150V, V_{GS} = 0V$
DSS	Bhain to Cource Leakage Guilent			250		$V_{DS} = 120V, V_{GS} = 0V, T_J = 150^{\circ}C$
	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 30V$
IGSS	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -30V$

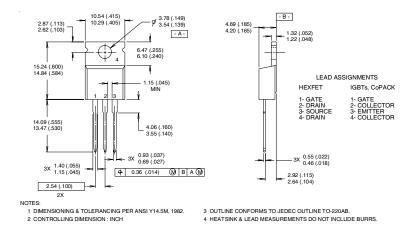
Static @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Dynamic @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	22			S	$V_{DS} = 50V, I_{D} = 37A$
Qg	Total Gate Charge		95	140		I _D = 37A
Q _{gs}	Gate-to-Source Charge		26	39	nC	V _{DS} = 120V
Q _{gd}	Gate-to-Drain ("Miller") Charge		45	68	Ī	V _{GS} = 10V,
t _{d(on)}	Turn-On Delay Time		18			$V_{DD} = 75V$
tr	Rise Time		110		ns	I _D = 37A
t _{d(off)}	Turn-Off Delay Time		28			R _G = 1.8Ω
t _f	Fall Time		51			$V_{GS} = 10V$ ④
Ciss	Input Capacitance		3470			$V_{GS} = 0V$
Coss	Output Capacitance		690			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		150		pF	f = 1.0 MHz
Coss	Output Capacitance		4600		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		310		1	$V_{GS} = 0V, V_{DS} = 120V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		580			$V_{GS} = 0V, V_{DS} = 0V$ to 120V \odot

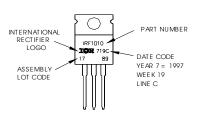
Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		520	mJ
I _{AR}	Avalanche Current [®]		37	А
E _{AR}	Repetitive Avalanche Energy ^①		33	mJ


Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			60		MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			250		integral reverse
	(Body Diode) ①			200		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J=25^{\circ}C,\ I_S=37A,\ V_{GS}=0V \textcircled{9}$
t _{rr}	Reverse Recovery Time		180	270	ns	$T_{\rm J} = 25^{\circ}C, I_{\rm F} = 37A$
Q _{rr}	Reverse RecoveryCharge		1340	2010	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$)				
2						

IRFB61N15DPbF


International

TO-220AB Package Outline

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLED ON WW 19, 1997 NOTE: "P" in assembly line position indicates "Lead-Free"

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $$\label{eq:starting t_J = 25°C, L = 0.98mH} \begin{split} \mathbb{C} & \text{Starting } \mathsf{T}_\mathsf{J} = 25°C, \ \mathsf{L} = 0.98mH \\ & \mathsf{R}_\mathsf{G} = 25\Omega, \ \mathsf{I}_\mathsf{AS} = 37\mathsf{A}, \ \mathsf{V}_\mathsf{GS} = 10\mathsf{V} \end{split}$$

 $\$ I_{SD} \leq 37A, di/dt \leq 170A/µs, V_{DD} \leq V_{(BR)DSS}, T_J \leq 175°C

- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- S C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

